Source code for cornac.data.text

# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

from typing import List, Dict, Callable, Union
from collections import defaultdict, Counter, OrderedDict
import string
import pickle
import re

import numpy as np
import scipy.sparse as sp

from . import FeatureModality
from .modality import fallback_feature
from ..utils import normalize

__all__ = ['Tokenizer',
           'BaseTokenizer',
           'Vocabulary',
           'CountVectorizer',
           'TextModality']

PAD, UNK, BOS, EOS = '<PAD>', '<UNK>', '<BOS>', '<EOS>'
SPECIAL_TOKENS = [PAD, UNK, BOS, EOS]

ENGLISH_STOPWORDS = frozenset([
    'a', 'about', 'above', 'across', 'after', 'afterwards', 'again', 'against', 'all', 'almost', 'alone',
    'along', 'already', 'also', 'although', 'always', 'am', 'among', 'amongst', 'amoungst', 'amount',
    'an', 'and', 'another', 'any', 'anyhow', 'anyone', 'anything', 'anyway', 'anywhere', 'are', 'around',
    'as', 'at', 'back', 'be', 'became', 'because', 'become', 'becomes', 'becoming', 'been', 'before',
    'beforehand', 'behind', 'being', 'below', 'beside', 'besides', 'between', 'beyond', 'bill', 'both',
    'bottom', 'but', 'by', 'call', 'can', 'cannot', 'cant', 'co', 'con', 'could', 'couldnt', 'cry', 'de',
    'describe', 'detail', 'do', 'done', 'down', 'due', 'during', 'each', 'eg', 'eight', 'either', 'eleven',
    'else', 'elsewhere', 'empty', 'enough', 'etc', 'even', 'ever', 'every', 'everyone', 'everything',
    'everywhere', 'except', 'few', 'fifteen', 'fifty', 'fill', 'find', 'fire', 'first', 'five', 'for',
    'former', 'formerly', 'forty', 'found', 'four', 'from', 'front', 'full', 'further', 'get', 'give',
    'go', 'had', 'has', 'hasnt', 'have', 'he', 'hence', 'her', 'here', 'hereafter', 'hereby', 'herein',
    'hereupon', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'however', 'hundred', 'i', 'ie', 'if',
    'in', 'inc', 'indeed', 'interest', 'into', 'is', 'it', 'its', 'itself', 'keep', 'last', 'latter',
    'latterly', 'least', 'less', 'ltd', 'made', 'many', 'may', 'me', 'meanwhile', 'might', 'mill', 'mine',
    'more', 'moreover', 'most', 'mostly', 'move', 'much', 'must', 'my', 'myself', 'name', 'namely',
    'neither', 'never', 'nevertheless', 'next', 'nine', 'no', 'nobody', 'none', 'noone', 'nor', 'not',
    'nothing', 'now', 'nowhere', 'of', 'off', 'often', 'on', 'once', 'one', 'only', 'onto', 'or', 'other',
    'others', 'otherwise', 'our', 'ours', 'ourselves', 'out', 'over', 'own', 'part', 'per', 'perhaps',
    'please', 'put', 'rather', 're', 'same', 'see', 'seem', 'seemed', 'seeming', 'seems', 'serious',
    'several', 'she', 'should', 'show', 'side', 'since', 'sincere', 'six', 'sixty', 'so', 'some', 'somehow',
    'someone', 'something', 'sometime', 'sometimes', 'somewhere', 'still', 'such', 'system', 'take', 'ten',
    'than', 'that', 'the', 'their', 'them', 'themselves', 'then', 'thence', 'there', 'thereafter', 'thereby',
    'therefore', 'therein', 'thereupon', 'these', 'they', 'thick', 'thin', 'third', 'this', 'those', 'though',
    'three', 'through', 'throughout', 'thru', 'thus', 'to', 'together', 'too', 'top', 'toward', 'towards',
    'twelve', 'twenty', 'two', 'un', 'under', 'until', 'up', 'upon', 'us', 'very', 'via', 'was', 'we',
    'well', 'were', 'what', 'whatever', 'when', 'whence', 'whenever', 'where', 'whereafter', 'whereas',
    'whereby', 'wherein', 'whereupon', 'wherever', 'whether', 'which', 'while', 'whither', 'who', 'whoever',
    'whole', 'whom', 'whose', 'why', 'will', 'with', 'within', 'without', 'would', 'yet', 'you', 'your',
    'yours', 'yourself', 'yourselves'])


def _validate_stopwords(stop_words):
    if stop_words == 'english':
        return ENGLISH_STOPWORDS
    elif isinstance(stop_words, str):
        raise ValueError("Invalid built-in stop-words list: %s" % stop_words)
    elif stop_words is None:
        return None
    else:
        return frozenset(stop_words)


[docs] class Tokenizer(): """ Generic class for other subclasses to extend from. This typically either splits text into word tokens or character tokens. """
[docs] def tokenize(self, t: str) -> List[str]: """ Splitting text into tokens. Parameters ---------- t: str, required Input text to be tokenized. Returns ------- tokens : ``List[str]`` """ raise NotImplementedError
[docs] def batch_tokenize(self, texts: List[str]) -> List[List[str]]: """ Splitting a corpus with multiple text documents. Parameters ---------- texts: List[str], required Input list of texts to be tokenized. Returns ------- tokens : ``List[List[str]]`` """ raise NotImplementedError
def rm_tags(t: str) -> str: """ Remove html tags. e,g, rm_tags("<i>Hello</i> <b>World</b>!") -> "Hello World". """ return re.sub('<([^>]+)>', '', t) def rm_numeric(t: str) -> str: """ Remove digits from `t`. """ return re.sub('[0-9]+', ' ', t) def rm_punctuation(t: str) -> str: """ Remove "!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~" from t. """ return t.translate(str.maketrans('', '', string.punctuation)) def rm_dup_spaces(t: str) -> str: """ Remove duplicate spaces in `t`. """ return re.sub(' {2,}', ' ', t) DEFAULT_PRE_RULES = [lambda t: t.lower(), rm_tags, rm_numeric, rm_punctuation, rm_dup_spaces]
[docs] class BaseTokenizer(Tokenizer): """ A base tokenizer use a provided delimiter `sep` to split text. Parameters ---------- sep: str, optional, default: ' ' Separator string used to split text into tokens. pre_rules: List[Callable[[str], str]], optional List of callable lambda functions to apply on text before tokenization. stop_words: Union[List, str], optional List of stop-words to be ignored during tokenization, or key of built-in stop-word lists (e.g., english). """ def __init__(self, sep: str = ' ', pre_rules: List[Callable[[str], str]] = None, stop_words: Union[List, str] = None): self.sep = sep self.pre_rules = DEFAULT_PRE_RULES if pre_rules is None else pre_rules self.stop_words = _validate_stopwords(stop_words)
[docs] def tokenize(self, t: str) -> List[str]: """ Splitting text into tokens. Parameters ---------- t: str, required Input text to be tokenized. Returns ------- tokens : ``List[str]`` """ for rule in self.pre_rules: t = rule(t) tokens = t.split(self.sep) if self.stop_words is not None: tokens = [tok for tok in tokens if tok not in self.stop_words] return tokens
# TODO: this function can be parallelized
[docs] def batch_tokenize(self, texts: List[str]) -> List[List[str]]: """ Splitting a corpus with multiple text documents. Parameters ---------- texts: List[str], required Input list of texts to be tokenized. Returns ------- tokens : ``List[List[str]]`` """ return [self.tokenize(t) for t in texts]
[docs] class Vocabulary(): """ Vocabulary basically contains mapping between numbers and tokens and vice versa. Parameters ---------- idx2tok: List[str], required List of tokens where list indices are corresponding to their mapped integer indices. use_special_tokens: bool, optional, default: False If `True`, vocabulary will include `SPECIAL_TOKENS`. """ def __init__(self, idx2tok: List[str], use_special_tokens: bool = False): self.use_special_tokens = use_special_tokens self.idx2tok = self._add_special_tokens(idx2tok) if use_special_tokens else idx2tok self.build_tok2idx()
[docs] def build_tok2idx(self): """ Build a mapping between tokens to their integer indices """ self.tok2idx = defaultdict(int, {tok: idx for idx, tok in enumerate(self.idx2tok)})
@staticmethod def _add_special_tokens(idx2tok: List[str]) -> List[str]: for tok in reversed(SPECIAL_TOKENS): # <PAD>:0, '<UNK>':1, '<BOS>':2, '<EOS>':3 if tok in idx2tok: idx2tok.remove(tok) idx2tok.insert(0, tok) return idx2tok @property def size(self): return len(self.idx2tok)
[docs] def to_idx(self, tokens: List[str]) -> List[int]: """Convert a list of `tokens` to their integer indices. Parameters ---------- tokens: List[str], required List of string tokens. Returns ------- indices: List[int] List of integer indices corresponding to input `tokens`. """ return [self.tok2idx.get(tok, 1) for tok in tokens] # 1 is <UNK> idx
[docs] def to_text(self, indices: List[int], sep=' ') -> List[str]: """Convert a list of integer `indices` to their tokens. Parameters ---------- indices: List[int], required List of token integer indices. sep: str, optional, default: ' ' Separator string used to connect tokens. Returns ------- text: str Aggregated text of tokens seperated by `sep`. """ return sep.join([self.idx2tok[i] for i in indices]) if sep is not None else [self.idx2tok[i] for i in indices]
[docs] def save(self, path): """Save idx2tok into a pickle file. Parameters ---------- path: str, required Path to store the dictionary on disk. """ pickle.dump(self.idx2tok, open(path, 'wb'))
[docs] @classmethod def load(cls, path): """ Load a vocabulary from `path` to a pickle file. """ return cls(pickle.load(open(path, 'rb')))
[docs] @classmethod def from_tokens(cls, tokens: List[str], max_vocab: int = None, min_freq: int = 1, use_special_tokens: bool = False) -> 'Vocabulary': """Build a vocabulary from list of tokens. Parameters ---------- tokens: List[str], required List of string tokens. max_vocab: int, optional Limit for size of the vocabulary. If specified, tokens will be ranked based on counts and gathered top-down until reach `max_vocab`. min_freq: int, optional, default: 1 Cut-off threshold for tokens based on their counts. use_special_tokens: bool, optional, default: False If `True`, vocabulary will include `SPECIAL_TOKENS`. """ freq = Counter(tokens) idx2tok = [tok for tok, cnt in freq.most_common(max_vocab) if cnt >= min_freq] return cls(idx2tok, use_special_tokens)
[docs] @classmethod def from_sequences(cls, sequences: List[List[str]], max_vocab: int = None, min_freq: int = 1, use_special_tokens: bool = False) -> 'Vocabulary': """Build a vocabulary from sequences (list of list of tokens). Parameters ---------- sequences: List[List[str]], required Corpus of multiple lists of string tokens. max_vocab: int, optional Limit for size of the vocabulary. If specified, tokens will be ranked based on counts and gathered top-down until reach `max_vocab`. min_freq: int, optional, default: 1 Cut-off threshold for tokens based on their counts. use_special_tokens: bool, optional, default: False If `True`, vocabulary will include `SPECIAL_TOKENS`. """ return Vocabulary.from_tokens([tok for seq in sequences for tok in seq], max_vocab, min_freq, use_special_tokens)
[docs] class CountVectorizer(): """Convert a collection of text documents to a matrix of token counts This implementation produces a sparse representation of the counts using scipy.sparse.csr_matrix. Parameters ---------- tokenizer: Tokenizer, optional, default=None Tokenizer for text splitting. If None, the BaseTokenizer will be used. vocab: Vocabulary, optional, default = None Vocabulary of tokens. It contains mapping between tokens to their integer ids and vice versa. max_doc_freq: float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the value represents a proportion of documents, int for absolute counts. If `vocab` is not None, this will be ignored. min_doc_freq: float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the value represents a proportion of documents, int absolute counts. If `vocab` is not None, this will be ignored. max_features : int or None, optional, default=None If not None, build a vocabulary that only consider the top `max_features` ordered by term frequency across the corpus. If `vocab` is not None, this will be ignored. binary : boolean, default=False If True, all non zero counts are set to 1. Reference --------- https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/feature_extraction/text.py#L790 """ def __init__(self, tokenizer: Tokenizer = None, vocab: Vocabulary = None, max_doc_freq: Union[float, int] = 1.0, min_doc_freq: int = 1, max_features: int = None, binary: bool = False): self.tokenizer = BaseTokenizer() if tokenizer is None else tokenizer self.vocab = vocab self.max_doc_freq = max_doc_freq self.min_doc_freq = min_doc_freq if max_doc_freq < 0 or min_doc_freq < 0: raise ValueError('negative value for max_doc_freq or min_doc_freq') self.max_features = max_features if max_features is not None: if max_features <= 0: raise ValueError('max_features=%r, ' 'neither a positive integer nor None' % max_features) self.binary = binary def _limit_features(self, X: sp.csr_matrix, max_doc_count: int, min_doc_count: int): """Remove too common features. Prune features that are non zero in more samples than max_doc_count and modifying the vocabulary. """ if max_doc_count >= X.shape[0] and min_doc_count <= 1 and self.max_features is None: return X # Calculate a mask based on document frequencies doc_freq = np.bincount(X.indices, minlength=X.shape[1]) term_indices = np.arange(X.shape[1]) # terms are already sorted based on frequency from Vocabulary mask = np.ones(len(doc_freq), dtype=bool) if max_doc_count < X.shape[0]: mask &= doc_freq <= max_doc_count if min_doc_count > 1: mask &= doc_freq >= min_doc_count if self.max_features is not None and mask.sum() > self.max_features: mask_indices = term_indices[mask][:self.max_features] new_mask = np.zeros(len(doc_freq), dtype=bool) new_mask[mask_indices] = True mask = new_mask for index in np.sort(np.where(np.logical_not(mask))[0])[::-1]: del self.vocab.idx2tok[index] self.vocab.build_tok2idx() # rebuild the mapping kept_indices = np.where(mask)[0] if len(kept_indices) == 0: raise ValueError("After pruning, no terms remain. Try a lower" " min_freq or a higher max_doc_freq.") return X[:, kept_indices] def _count(self, sequences: List[List[str]]): """ Create sparse feature matrix of document term counts Ignore SPECIAL_TOKENS if used from count matrix """ data = [] indices = [] indptr = [0] for sequence in sequences: feature_counter = Counter() for token in sequence: if token not in self.vocab.tok2idx.keys(): continue idx = self.vocab.tok2idx[token] if self.vocab.use_special_tokens: idx -= len(SPECIAL_TOKENS) feature_counter[idx] += 1 indices.extend(feature_counter.keys()) data.extend(feature_counter.values()) indptr.append(len(indices)) feature_dim = self.vocab.size if self.vocab.use_special_tokens: feature_dim -= len(SPECIAL_TOKENS) X = sp.csr_matrix((data, indices, indptr), shape=(len(sequences), feature_dim), dtype=np.int64) X.sort_indices() return X
[docs] def fit(self, raw_documents: List[str]) -> 'CountVectorizer': """Build a vocabulary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- count_vectorizer: :obj:`<cornac.data.text.CountVectorizer>` An object of type `CountVectorizer`. """ self.fit_transform(raw_documents) return self
[docs] def fit_transform(self, raw_documents: List[str]) -> (List[List[str]], sp.csr_matrix): """Build the vocabulary and return term-document matrix. Parameters ---------- raw_documents : List[str] Returns ------- (sequences, X) : sequences: List[List[str] Tokenized sequences of raw_documents X: array, [n_samples, n_features] Document-term matrix. """ sequences = self.tokenizer.batch_tokenize(raw_documents) fixed_vocab = self.vocab is not None if self.vocab is None: self.vocab = Vocabulary.from_sequences(sequences) X = self._count(sequences) if self.binary: X.data.fill(1) if not fixed_vocab: n_docs = X.shape[0] max_doc_count = (self.max_doc_freq if isinstance(self.max_doc_freq, int) else int(self.max_doc_freq * n_docs)) min_doc_count = (self.min_doc_freq if isinstance(self.min_doc_freq, int) else int(self.min_doc_freq * n_docs)) X = self._limit_features(X, max_doc_count, min_doc_count) return sequences, X
[docs] def transform(self, raw_documents: List[str]) -> (List[List[str]], sp.csr_matrix): """Transform documents to document-term matrix. Parameters ---------- raw_documents : List[str] Returns ------- (sequences, X) : sequences: List[List[str] Tokenized sequences of raw_documents. X: array, [n_samples, n_features] Document-term matrix. """ sequences = self.tokenizer.batch_tokenize(raw_documents) X = self._count(sequences) if self.binary: X.data.fill(1) return sequences, X
class TfidfVectorizer(CountVectorizer): """Convert a collection of raw documents to a matrix of TF-IDF features. Parameters ---------- tokenizer: Tokenizer, optional, default = None Tokenizer for text splitting. If None, the BaseTokenizer will be used. vocab: Vocabulary, optional, default = None Vocabulary of tokens. It contains mapping between tokens to their integer ids and vice versa. max_doc_freq: float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the value represents a proportion of documents, int for absolute counts. If `vocab` is not None, this will be ignored. min_doc_freq: float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the value represents a proportion of documents, int absolute counts. If `vocab` is not None, this will be ignored. max_features : int or None, optional, default=None If not None, build a vocabulary that only consider the top `max_features` ordered by term frequency across the corpus. If `vocab` is not None, this will be ignored. binary : boolean, default=False If True, all non zero counts are set to 1. norm : 'l1', 'l2' or None, optional, default='l2' Each output row will have unit norm, either: * 'l2': Sum of squares of vector elements is 1. The cosine similarity between two vectors is their dot product when l2 norm has been applied. * 'l1': Sum of absolute values of vector elements is 1. See :func:`utils.common.normalize` use_idf : boolean, default=True Enable inverse-document-frequency reweighting. smooth_idf : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. sublinear_tf : boolean (default=False) Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). Reference --------- https://github.com/scikit-learn/scikit-learn/blob/d6d1d63fa6b098c72953a6827aae475f611936ed/sklearn/feature_extraction/text.py#L1451 """ def __init__(self, tokenizer: Tokenizer = None, vocab: Vocabulary = None, max_doc_freq: Union[float, int] = 1.0, min_doc_freq: int = 1, max_features: int = None, binary: bool = False, norm='l2', use_idf=True, smooth_idf=True, sublinear_tf=False): super().__init__(tokenizer=tokenizer, vocab=vocab, max_doc_freq=max_doc_freq, min_doc_freq=min_doc_freq, max_features=max_features, binary=binary) self.norm = norm self.use_idf = use_idf self.smooth_idf = smooth_idf self.sublinear_tf = sublinear_tf def _build_idf(self, X): """ Build inverse document frequency vector (global term weights). """ n_samples, n_features = X.shape doc_freq = np.bincount(X.indices, minlength=X.shape[1]) # perform idf smoothing if required doc_freq += int(self.smooth_idf) n_samples += int(self.smooth_idf) # log+1 instead of log makes sure terms with zero idf don't get # suppressed entirely. idf = np.log(n_samples / doc_freq) + 1 self.idf = sp.diags(idf, offsets=0, shape=(n_features, n_features), format='csr') def _transform(self, X): """ Transform tf matrix into tf-idf matrix. """ X = (X.tocsr().astype(np.float64) if sp.issparse(X) else sp.csr_matrix(X, dtype=np.float64)) if self.sublinear_tf: np.log(X.data, X.data) X.data += 1 if self.use_idf: X = X * self.idf if self.norm: X = normalize(X, norm=self.norm, copy=False) return X def fit(self, raw_documents: List[str]) -> 'TfidfVectorizer': """Build a vocabulary of all tokens in the raw documents. Parameters ---------- raw_documents : iterable An iterable which yields either str, unicode or file objects. Returns ------- tfidf_vectorizer: :obj:`<cornac.data.text.IfidfVectorizer>` An object of type `IfidfVectorizer`. """ self.fit_transform(raw_documents) return self def fit_transform(self, raw_documents: List[str]) -> (List[List[str]], sp.csr_matrix): """Build the vocabulary and return term-document matrix. Parameters ---------- raw_documents : List[str] Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ _, X = super().fit_transform(raw_documents) if self.use_idf: self._build_idf(X) return self._transform(X) def transform(self, raw_documents: List[str]) -> (List[List[str]], sp.csr_matrix): """Transform documents to document-term matrix. Parameters ---------- raw_documents : List[str] Returns ------- X : sparse matrix, [n_samples, n_features] Tf-idf-weighted document-term matrix. """ _, X = super().transform(raw_documents) return self._transform(X)
[docs] class TextModality(FeatureModality): """Text modality Parameters ---------- corpus: List[str], default = None List of user/item texts that the indices are aligned with `ids`. ids: List, default = None List of user/item ids that the indices are aligned with `corpus`. If None, the indices of provided `corpus` will be used as `ids`. tokenizer: Tokenizer, optional, default = None Tokenizer for text splitting. If None, the BaseTokenizer will be used. vocab: Vocabulary, optional, default = None Vocabulary of tokens. It contains mapping between tokens to their integer ids and vice versa. max_vocab: int, optional, default = None The maximum size of the vocabulary. If vocab is provided, this will be ignored. max_doc_freq: float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the value represents a proportion of documents, int for absolute counts. If `vocab` is not None, this will be ignored. min_doc_freq: float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the value represents a proportion of documents, int absolute counts. If `vocab` is not None, this will be ignored. tfidf_params: dict or None, optional, default=None If `None`, a default arguments of :obj:`<cornac.data.text.IfidfVectorizer>` will be used. List of parameters: 'binary' : boolean, default=False If True, all non zero counts are set to 1. 'norm' : 'l1', 'l2' or None, optional, default='l2' Each output row will have unit norm, either: * 'l2': Sum of squares of vector elements is 1. The cosine similarity between two vectors is their dot product when l2 norm has been applied. * 'l1': Sum of absolute values of vector elements is 1. See :func:`utils.common.normalize` 'use_idf' : boolean, default=True Enable inverse-document-frequency reweighting. 'smooth_idf' : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. 'sublinear_tf' : boolean (default=False) Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). """ def __init__(self, corpus: List[str] = None, ids: List = None, tokenizer: Tokenizer = None, vocab: Vocabulary = None, max_vocab: int = None, max_doc_freq: Union[float, int] = 1.0, min_doc_freq: int = 1, tfidf_params: Dict = None, **kwargs): super().__init__(ids=ids, **kwargs) self.corpus = corpus self.tokenizer = BaseTokenizer() if tokenizer is None else tokenizer self.vocab = vocab self.max_vocab = max_vocab self.max_doc_freq = max_doc_freq self.min_doc_freq = min_doc_freq self.tfidf_params = tfidf_params self.sequences = None self.count_matrix = None self.__tfidf_matrix = None @property def tfidf_matrix(self): """Return tf-idf matrix. """ if self.__tfidf_matrix is None: params = { 'tokenizer': self.tokenizer, 'vocab': self.vocab, 'max_doc_freq': self.max_doc_freq, 'min_doc_freq': self.min_doc_freq, 'max_features': self.max_vocab } self.tfidf_params = (params if self.tfidf_params is None else {**self.tfidf_params, **params}) vectorizer = TfidfVectorizer(**self.tfidf_params) self.__tfidf_matrix = vectorizer.fit_transform(self.corpus) return self.__tfidf_matrix def _swap_text(self, id_map: Dict): new_corpus = self.corpus.copy() new_ids = self.ids.copy() for old_idx, raw_id in enumerate(self.ids): new_idx = id_map.get(raw_id, None) if new_idx is None: continue assert new_idx < len(self.corpus) new_corpus[new_idx] = self.corpus[old_idx] new_ids[new_idx] = raw_id self.corpus = new_corpus self.ids = new_ids def _build_text(self, id_map: Dict): """Build the text based on provided global id map """ if self.corpus is None: return if (self.ids is not None) and (id_map is not None): self._swap_text(id_map) vectorizer = CountVectorizer(tokenizer=self.tokenizer, vocab=self.vocab, max_doc_freq=self.max_doc_freq, min_doc_freq=self.min_doc_freq, max_features=self.max_vocab, binary=False) self.sequences, self.count_matrix = vectorizer.fit_transform(self.corpus) self.vocab = Vocabulary(vectorizer.vocab.idx2tok, use_special_tokens=True) # Map tokens into integer ids for i, seq in enumerate(self.sequences): self.sequences[i] = self.vocab.to_idx(seq) # Reset other lazy-built properties (e.g. tfidf) self.__tfidf_matrix = None
[docs] def build(self, id_map=None, **kwargs): """Build the model based on provided list of ordered ids Parameters ---------- id_map: dict, optional A dictionary holds mapping from original ids to mapped integer indices of users/items. Returns ------- text_modality: :obj:`<cornac.data.TextModality>` An object of type `TextModality`. """ super().build(id_map=id_map) self._build_text(id_map) return self
[docs] def batch_seq(self, batch_ids, max_length=None): """Return a numpy matrix of text sequences containing token ids with size=(len(batch_ids), max_length). Parameters ---------- batch_ids: Union[List, numpy.array], required An array containing the ids of rows of text sequences to be returned. max_length: int, optional Cut-off length of returned sequences. If `None`, it will be inferred based on retrieved sequences. Returns ------- batch_sequences: numpy.ndarray Batch of sequences with zero-padding at the end. """ if self.sequences is None: raise ValueError('self.sequences is required but None!') if max_length is None: max_length = max(len(self.sequences[mapped_id]) for mapped_id in batch_ids) seq_mat = np.zeros((len(batch_ids), max_length), dtype='int') for i, mapped_id in enumerate(batch_ids): idx_seq = self.sequences[mapped_id][:max_length] for j, idx in enumerate(idx_seq): seq_mat[i, j] = idx return seq_mat
@fallback_feature def batch_bow(self, batch_ids, binary=False, keep_sparse=False): """Return matrix of bag-of-words corresponding to provided batch_ids Parameters ---------- batch_ids: array An array of ids to retrieve the corresponding features. binary: bool, default = False If `True`, the feature values will be converted into (0 or 1). keep_sparse: bool, default = False If `True`, the return feature matrix will be a `scipy.sparse.csr_matrix`. Otherwise, it will be a dense matrix. Returns ------- batch_bow: numpy.ndarray Batch of bag-of-words representations corresponding to input `batch_ids`. """ if self.count_matrix is None: raise ValueError('self.count_matrix is required but None!') bow_mat = self.count_matrix[batch_ids] if binary: bow_mat.data.fill(1) return bow_mat if keep_sparse else bow_mat.A
[docs] def batch_tfidf(self, batch_ids, keep_sparse=False): """Return matrix of TF-IDF features corresponding to provided batch_ids Parameters ---------- batch_ids: array An array of ids to retrieve the corresponding features. keep_sparse: bool, default = False If `True`, the return feature matrix will be a `scipy.sparse.csr_matrix`. Otherwise, it will be a dense matrix. Returns ------- batch_tfidf: numpy.ndarray Batch of TF-IDF representations corresponding to input `batch_ids`. """ tfidf_mat = self.tfidf_matrix[batch_ids] return tfidf_mat if keep_sparse else tfidf_mat.A
class ReviewModality(TextModality): """Review modality Parameters ---------- data: List[tuple], required A triplet list of user, item, and review \ e.g., data=[('user1', 'item1', 'review1'), ('user2', 'item2', 'review2)]. group_by: 'user', 'item', or None, required, default = None Group mode. Whether reviews are grouped based on users, items, or not. tokenizer: Tokenizer, optional, default = None Tokenizer for text splitting. If None, the BaseTokenizer will be used. vocab: Vocabulary, optional, default = None Vocabulary of tokens. It contains mapping between tokens to their integer ids and vice versa. max_vocab: int, optional, default = None The maximum size of the vocabulary. If vocab is provided, this will be ignored. max_doc_freq: float in range [0.0, 1.0] or int, default=1.0 When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the value represents a proportion of documents, int for absolute counts. If `vocab` is not None, this will be ignored. min_doc_freq: float in range [0.0, 1.0] or int, default=1 When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the value represents a proportion of documents, int absolute counts. If `vocab` is not None, this will be ignored. tfidf_params: dict or None, optional, default=None If `None`, a default arguments of :obj:`<cornac.data.text.IfidfVectorizer>` will be used. List of parameters: 'binary' : boolean, default=False If True, all non zero counts are set to 1. 'norm' : 'l1', 'l2' or None, optional, default='l2' Each output row will have unit norm, either: * 'l2': Sum of squares of vector elements is 1. The cosine similarity between two vectors is their dot product when l2 norm has been applied. * 'l1': Sum of absolute values of vector elements is 1. See :func:`utils.common.normalize` 'use_idf' : boolean, default=True Enable inverse-document-frequency reweighting. 'smooth_idf' : boolean, default=True Smooth idf weights by adding one to document frequencies, as if an extra document was seen containing every term in the collection exactly once. Prevents zero divisions. 'sublinear_tf' : boolean (default=False) Apply sublinear tf scaling, i.e. replace tf with 1 + log(tf). """ def __init__(self, data: List[tuple] = None, group_by: str = None, tokenizer: Tokenizer = None, vocab: Vocabulary = None, max_vocab: int = None, max_doc_freq: Union[float, int] = 1.0, min_doc_freq: int = 1, tfidf_params: Dict = None, **kwargs): super().__init__( tokenizer=tokenizer, vocab=vocab, max_vocab=max_vocab, max_doc_freq=max_doc_freq, min_doc_freq=min_doc_freq, tfidf_params=tfidf_params, **kwargs ) self.raw_data = data if group_by not in ['user', 'item', None]: raise ValueError("group_by should be in ['user', 'item', None]") self.group_by = group_by def _build_corpus(self, uid_map, iid_map, dok_matrix): id_map = None corpus = None if self.group_by is None: self.user_review = OrderedDict() self.item_review = OrderedDict() reviews = OrderedDict() corpus = [] for raw_uid, raw_iid, review in self.raw_data: user_idx = uid_map.get(raw_uid, None) item_idx = iid_map.get(raw_iid, None) if user_idx is None or item_idx is None or dok_matrix[user_idx, item_idx] == 0: continue idx = len(reviews) reviews.setdefault(idx, review) user_dict = self.user_review.setdefault(user_idx, OrderedDict()) user_dict[item_idx] = idx item_dict = self.item_review.setdefault(item_idx, OrderedDict()) item_dict[user_idx] = idx corpus.append(review) self.reviews = reviews else: id_map = uid_map if self.group_by == 'user' else iid_map corpus = ['' for _ in range(len(id_map))] for raw_uid, raw_iid, review in self.raw_data: user_idx = uid_map.get(raw_uid, None) item_idx = iid_map.get(raw_iid, None) if user_idx is None or item_idx is None or dok_matrix[user_idx, item_idx] == 0: continue _idx = user_idx if self.group_by == 'user' else item_idx corpus[_idx] = ' '.join([corpus[_idx], review.strip()]) return corpus, id_map def build(self, uid_map=None, iid_map=None, dok_matrix=None, **kwargs): """Build the model based on provided list of ordered ids """ if uid_map is None or iid_map is None or dok_matrix is None: raise ValueError('uid_map, iid_map, and dok_matrix are required') self.corpus, id_map = self._build_corpus(uid_map, iid_map, dok_matrix) super().build(id_map=id_map) return self