Source code for cornac.datasets.amazon_clothing

# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
This data is built based on the Amazon datasets provided by Julian McAuley @ http://jmcauley.ucsd.edu/data/amazon/.
We make sure all items having three types of auxiliary data: text, image, and context (items appearing together).
"""

from typing import List

import numpy as np

from ..utils import cache
from ..data import Reader
from ..data.reader import read_text


[docs]def load_rating(reader: Reader = None) -> List: """Load the user-item ratings Parameters ---------- reader: `obj:cornac.data.Reader`, default: None Reader object used to read the data. Returns ------- data: array-like Data in the form of a list of tuples (user, item, rating). """ fpath = cache(url='https://static.preferred.ai/cornac/datasets/amazon_clothing/rating.zip', unzip=True, relative_path='amazon_clothing/rating.txt') reader = Reader() if reader is None else reader return reader.read(fpath, sep='\t')
[docs]def load_text(): """Load the item text descriptions Returns ------- texts: List List of text documents, one per item. ids: List List of item ids aligned with indices in `texts`. """ fpath = cache(url='https://static.preferred.ai/cornac/datasets/amazon_clothing/text.zip', unzip=True, relative_path='amazon_clothing/text.txt') texts, ids = read_text(fpath, sep='::') return texts, ids
[docs]def load_image(): """Load the item image in the form of visual features (extracted from pre-trained CNN) Returns ------- features: numpy.ndarray Feature matrix with shape (n, 4096) with n is the number of items. item_ids: List List of item ids aligned with indices in `features`. """ features = np.load(cache(url='https://static.preferred.ai/cornac/datasets/amazon_clothing/image.zip', unzip=True, relative_path='amazon_clothing/image_features.npy')) item_ids = read_text(cache(url='https://static.preferred.ai/cornac/datasets/amazon_clothing/item_ids.zip', unzip=True, relative_path='amazon_clothing/item_ids.txt')) return features, item_ids
[docs]def load_context(reader: Reader = None) -> List: """Load the item-item interactions Parameters ---------- reader: `obj:cornac.data.Reader`, default: None Reader object used to read the data. Returns ------- data: array-like Data in the form of a list of tuples (item, item, 1). """ fpath = cache(url='https://static.preferred.ai/cornac/datasets/amazon_clothing/context.zip', unzip=True, relative_path='amazon_clothing/context.txt') reader = Reader() if reader is None else reader return reader.read(fpath, fmt='UI', sep='\t')