Source code for cornac.models.mcf.recom_mcf

# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np

from ..recommender import Recommender
from ..recommender import ANNMixin, MEASURE_DOT
from ...utils.common import sigmoid
from ...utils.common import scale
from ...exception import ScoreException


[docs] class MCF(Recommender, ANNMixin): """Matrix Co-Factorization. Parameters ---------- k: int, optional, default: 5 The dimension of the latent factors. max_iter: int, optional, default: 100 Maximum number of iterations or the number of epochs for SGD. learning_rate: float, optional, default: 0.001 The learning rate for SGD_RMSProp. gamma: float, optional, default: 0.9 The weight for previous/current gradient in RMSProp. lamda: float, optional, default: 0.001 The regularization parameter. name: string, optional, default: 'MCF' The name of the recommender model. trainable: boolean, optional, default: True When False, the model is not trained and Cornac assumes that the model is already \ pre-trained (U and V are not None). item-affinity network: See "cornac/examples/mcf_office.py" for an example of how to use \ cornac's graph modality to load and provide the "item-affinity network" for MCF. verbose: boolean, optional, default: False When True, some running logs are displayed. init_params: dictionary, optional, default: None List of initial parameters, e.g., init_params = {'U': U, 'V': V, 'Z', Z}. U: ndarray, shape (n_users, k) User latent factors. V: ndarray, shape (n_items, k) Item latent factors. Z: ndarray, shape (n_items, k) The "Also-Viewed" item latent factors. seed: int, optional, default: None Random seed for parameters initialization. References ---------- * Park, Chanyoung, Donghyun Kim, Jinoh Oh, and Hwanjo Yu. "Do Also-Viewed Products Help User Rating Prediction?."\ In Proceedings of WWW, pp. 1113-1122. 2017. """ def __init__( self, k=5, max_iter=100, learning_rate=0.001, gamma=0.9, lamda=0.001, name="MCF", trainable=True, verbose=False, init_params=None, seed=None, ): Recommender.__init__(self, name=name, trainable=trainable, verbose=verbose) self.k = k self.max_iter = max_iter self.learning_rate = learning_rate self.gamma = gamma self.lamda = lamda self.seed = seed self.ll = np.full(max_iter, 0) self.eps = 0.000000001 # Init params if provided self.init_params = {} if init_params is None else init_params self.U = self.init_params.get("U", None) # matrix of user factors self.V = self.init_params.get("V", None) # matrix of item factors self.Z = self.init_params.get("Z", None) # matrix of Also-Viewed item factors
[docs] def fit(self, train_set, val_set=None): """Fit the model to observations. Parameters ---------- train_set: :obj:`cornac.data.Dataset`, required User-Item preference data as well as additional modalities. val_set: :obj:`cornac.data.Dataset`, optional, default: None User-Item preference data for model selection purposes (e.g., early stopping). Returns ------- self : object """ Recommender.fit(self, train_set, val_set) if self.trainable: # user-item interactions (rat_uid, rat_iid, rat_val) = train_set.uir_tuple # item-item affinity network train_item_indices = set(train_set.uir_tuple[1]) (net_iid, net_jid, net_val) = train_set.item_graph.get_train_triplet( train_item_indices, train_item_indices ) if [self.min_rating, self.max_rating] != [0, 1]: if self.min_rating == self.max_rating: rat_val = scale(rat_val, 0.0, 1.0, 0.0, self.max_rating) else: rat_val = scale(rat_val, 0.0, 1.0, self.min_rating, self.max_rating) if [min(net_val), max(net_val)] != [0, 1]: if min(net_val) == max(net_val): net_val = scale(net_val, 0.0, 1.0, 0.0, max(net_val)) else: net_val = scale(net_val, 0.0, 1.0, min(net_val), max(net_val)) rat_val = np.array(rat_val, dtype="float32") rat_uid = np.array(rat_uid, dtype="int32") rat_iid = np.array(rat_iid, dtype="int32") net_val = np.array(net_val, dtype="float32") net_iid = np.array(net_iid, dtype="int32") net_jid = np.array(net_jid, dtype="int32") if self.verbose: print("Learning...") from cornac.models.mcf import mcf res = mcf.mcf( rat_uid, rat_iid, rat_val, net_iid, net_jid, net_val, k=self.k, n_users=train_set.num_users, n_items=train_set.num_items, n_ratings=len(rat_val), n_edges=len(net_val), n_epochs=self.max_iter, lamda=self.lamda, learning_rate=self.learning_rate, gamma=self.gamma, init_params={"U": self.U, "V": self.V, "Z": self.Z}, verbose=self.verbose, seed=self.seed, ) self.U = np.asarray(res["U"]) self.V = np.asarray(res["V"]) self.Z = np.asarray(res["Z"]) if self.verbose: print("Learning completed") elif self.verbose: print("%s is trained already (trainable = False)" % self.name) return self
[docs] def score(self, user_idx, item_idx=None): """Predict the scores/ratings of a user for an item. Parameters ---------- user_idx: int, required The index of the user for whom to perform score prediction. item_idx: int, optional, default: None The index of the item for which to perform score prediction. If None, scores for all known items will be returned. Returns ------- res : A scalar or a Numpy array Relative scores that the user gives to the item or to all known items """ if item_idx is None: if not self.knows_user(user_idx): raise ScoreException( "Can't make score prediction for (user_id=%d)" % user_idx ) known_item_scores = self.V.dot(self.U[user_idx, :]) return known_item_scores else: if not (self.knows_user(user_idx) and self.knows_item(item_idx)): raise ScoreException( "Can't make score prediction for (user_id=%d, item_id=%d)" % (user_idx, item_idx) ) user_pred = self.V[item_idx, :].dot(self.U[user_idx, :]) user_pred = sigmoid(user_pred) if self.min_rating == self.max_rating: user_pred = scale(user_pred, 0.0, self.max_rating, 0.0, 1.0) else: user_pred = scale(user_pred, self.min_rating, self.max_rating, 0.0, 1.0) return user_pred
[docs] def get_vector_measure(self): """Getting a valid choice of vector measurement in ANNMixin._measures. Returns ------- measure: MEASURE_DOT Dot product aka. inner product """ return MEASURE_DOT
[docs] def get_user_vectors(self): """Getting a matrix of user vectors serving as query for ANN search. Returns ------- out: numpy.array Matrix of user vectors for all users available in the model. """ return self.U
[docs] def get_item_vectors(self): """Getting a matrix of item vectors used for building the index for ANN search. Returns ------- out: numpy.array Matrix of item vectors for all items available in the model. """ return self.V