Source code for cornac.models.mf.recom_mf

# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================


import multiprocessing

import numpy as np

from ..recommender import Recommender
from ..recommender import ANNMixin, MEASURE_DOT
from ...exception import ScoreException
from ...utils import fast_dot
from ...utils import get_rng
from ...utils.init_utils import normal, zeros


[docs] class MF(Recommender, ANNMixin): """Matrix Factorization. Parameters ---------- k: int, optional, default: 10 The dimension of the latent factors. backend: str, optional, default: 'cpu' Backend used for model training: cpu, pytorch optimizer: str, optional, default: 'sgd' Specify an optimizer: adagrad, adam, rmsprop, sgd. (ineffective if using CPU backend) max_iter: int, optional, default: 100 Maximum number of iterations or the number of epochs for training. learning_rate: float, optional, default: 0.01 The learning rate. batch_size: int, optional, default: 256 Batch size (ineffective if using CPU backend). lambda_reg: float, optional, default: 0.001 The lambda value used for regularization. dropout: float, optional, default: 0.0 The dropout rate of embedding. (ineffective if using CPU backend) use_bias: boolean, optional, default: True When True, user, item, and global biases are used. early_stop: boolean, optional, default: False When True, delta loss will be checked after each iteration to stop learning earlier. num_threads: int, optional, default: 0 Number of parallel threads for training. If num_threads=0, all CPU cores will be utilized. If seed is not None, num_threads=1 to remove randomness from parallelization. (Only effective if using CPU backend). trainable: boolean, optional, default: True When False, the model will not be re-trained, and input of pre-trained parameters are required. verbose: boolean, optional, default: True When True, running logs are displayed. init_params: dictionary, optional, default: None Initial parameters, e.g., init_params = {'U': user_factors, 'V': item_factors, 'Bu': user_biases, 'Bi': item_biases} seed: int, optional, default: None Random seed for weight initialization. If specified, training will take longer because of single-thread (no parallelization). References ---------- * Koren, Y., Bell, R., & Volinsky, C. Matrix factorization techniques for recommender systems. \ In Computer, (8), 30-37. 2009. """ def __init__( self, name="MF", k=10, backend="cpu", optimizer="sgd", max_iter=20, learning_rate=0.01, batch_size=256, lambda_reg=0.02, dropout=0.0, use_bias=True, early_stop=False, num_threads=0, trainable=True, verbose=False, init_params=None, seed=None, ): super().__init__(name=name, trainable=trainable, verbose=verbose) self.k = k self.backend = backend self.optimizer = optimizer self.max_iter = max_iter self.learning_rate = learning_rate self.batch_size = batch_size self.lambda_reg = lambda_reg self.dropout = dropout self.use_bias = use_bias self.early_stop = early_stop self.seed = seed if seed is not None: self.num_threads = 1 elif num_threads > 0 and num_threads < multiprocessing.cpu_count(): self.num_threads = num_threads else: self.num_threads = multiprocessing.cpu_count() # Init params if provided self.init_params = {} if init_params is None else init_params self.u_factors = self.init_params.get("U", None) self.i_factors = self.init_params.get("V", None) self.u_biases = self.init_params.get("Bu", None) self.i_biases = self.init_params.get("Bi", None) def _init(self): rng = get_rng(self.seed) if self.u_factors is None: self.u_factors = normal( [self.num_users, self.k], std=0.01, random_state=rng ) if self.i_factors is None: self.i_factors = normal( [self.num_items, self.k], std=0.01, random_state=rng ) self.u_biases = ( zeros(self.num_users) if self.u_biases is None else self.u_biases ) self.i_biases = ( zeros(self.num_items) if self.i_biases is None else self.i_biases ) self.global_mean = self.global_mean if self.use_bias else 0.0
[docs] def fit(self, train_set, val_set=None): """Fit the model to observations. Parameters ---------- train_set: :obj:`cornac.data.Dataset`, required User-Item preference data as well as additional modalities. val_set: :obj:`cornac.data.Dataset`, optional, default: None User-Item preference data for model selection purposes (e.g., early stopping). Returns ------- self : object """ Recommender.fit(self, train_set, val_set) self._init() if self.trainable: if self.backend == "cpu": self._fit_cpu(train_set, val_set) elif self.backend == "pytorch": self._fit_pt(train_set, val_set) else: raise ValueError(f"{self.backend} is not supported") return self
################# ## CPU backend ## ################# def _fit_cpu(self, train_set, val_set): from cornac.models.mf import backend_cpu (rid, cid, val) = train_set.uir_tuple backend_cpu.fit_sgd( rid, cid, val.astype(np.float32), self.u_factors, self.i_factors, self.u_biases, self.i_biases, self.num_users, self.num_items, self.learning_rate, self.lambda_reg, self.global_mean, self.max_iter, self.num_threads, self.use_bias, self.early_stop, self.verbose, ) ##################### ## PyTorch backend ## ##################### def _fit_pt(self, train_set, val_set): import torch from .backend_pt import MF, learn device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.device = device if self.seed is not None: torch.manual_seed(self.seed) np.random.seed(self.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(self.seed) model = MF( self.u_factors, self.i_factors, self.u_biases.reshape(-1, 1), self.i_biases.reshape(-1, 1), self.use_bias, self.global_mean, self.dropout, ) learn( model=model, train_set=train_set, n_epochs=self.max_iter, batch_size=self.batch_size, learning_rate=self.learning_rate, reg=self.lambda_reg, optimizer=self.optimizer, device=device, ) self.u_factors = model.u_factors.weight.detach().cpu().numpy() self.i_factors = model.i_factors.weight.detach().cpu().numpy() if self.use_bias: self.u_biases = model.u_biases.weight.detach().cpu().squeeze().numpy() self.i_biases = model.i_biases.weight.detach().cpu().squeeze().numpy()
[docs] def score(self, user_idx, item_idx=None): """Predict the scores/ratings of a user for an item. Parameters ---------- user_idx: int, required The index of the user for whom to perform score prediction. item_idx: int, optional, default: None The index of the item for which to perform score prediction. If None, scores for all known items will be returned. Returns ------- res : A scalar or a Numpy array Relative scores that the user gives to the item or to all known items """ if item_idx is not None and self.is_unknown_item(item_idx): raise ScoreException("Can't make score prediction for item %d" % item_idx) if item_idx is None: known_item_scores = self.global_mean + self.i_biases if self.knows_user(user_idx): known_item_scores += self.u_biases[user_idx] fast_dot(self.u_factors[user_idx], self.i_factors, known_item_scores) return known_item_scores else: item_score = self.global_mean + self.i_biases[item_idx] if self.knows_user(user_idx): item_score += self.u_biases[user_idx] item_score += self.u_factors[user_idx].dot(self.i_factors[item_idx]) return item_score
[docs] def get_vector_measure(self): """Getting a valid choice of vector measurement in ANNMixin._measures. Returns ------- measure: MEASURE_DOT Dot product aka. inner product """ return MEASURE_DOT
[docs] def get_user_vectors(self): """Getting a matrix of user vectors serving as query for ANN search. Returns ------- out: numpy.array Matrix of user vectors for all users available in the model. """ user_vectors = self.u_factors if self.use_bias: user_vectors = np.concatenate( (user_vectors, np.ones([user_vectors.shape[0], 1])), axis=1 ) return user_vectors
[docs] def get_item_vectors(self): """Getting a matrix of item vectors used for building the index for ANN search. Returns ------- out: numpy.array Matrix of item vectors for all items available in the model. """ item_vectors = self.i_factors if self.use_bias: item_vectors = np.concatenate( (item_vectors, self.i_biases.reshape((-1, 1))), axis=1 ) return item_vectors