Source code for cornac.models.ncf.recom_gmf

# Copyright 2018 The Cornac Authors. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

import numpy as np

from ..recommender import Recommender
from ...exception import ScoreException

[docs]class GMF(Recommender): """Generalized Matrix Factorization. Parameters ---------- num_factors: int, optional, default: 8 Embedding size of MF model. regs: float, optional, default: 0. Regularization for user and item embeddings. num_epochs: int, optional, default: 20 Number of epochs. batch_size: int, optional, default: 256 Batch size. num_neg: int, optional, default: 4 Number of negative instances to pair with a positive instance. lr: float, optional, default: 0.001 Learning rate. learner: str, optional, default: 'adam' Specify an optimizer: adagrad, adam, rmsprop, sgd early_stopping: {min_delta: float, patience: int}, optional, default: None If `None`, no early stopping. Meaning of the arguments: - `min_delta`: the minimum increase in monitored value on validation set to be considered as improvement, \ i.e. an increment of less than min_delta will count as no improvement. - `patience`: number of epochs with no improvement after which training should be stopped. name: string, optional, default: 'GMF' Name of the recommender model. trainable: boolean, optional, default: True When False, the model is not trained and Cornac assumes that the model is already \ pre-trained. verbose: boolean, optional, default: False When True, some running logs are displayed. seed: int, optional, default: None Random seed for parameters initialization. References ---------- * He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S. (2017, April). Neural collaborative filtering. \ In Proceedings of the 26th international conference on world wide web (pp. 173-182). """ def __init__(self, name='GMF', num_factors=8, regs=(0., 0.), num_epochs=20, batch_size=256, num_neg=4, lr=0.001, learner='adam', early_stopping=None, trainable=True, verbose=True, seed=None): super().__init__(name=name, trainable=trainable, verbose=verbose) self.num_factors = num_factors self.regs = regs self.num_epochs = num_epochs self.batch_size = batch_size self.num_neg = num_neg self.learning_rate = lr self.learner = learner self.early_stopping = early_stopping self.seed = seed
[docs] def fit(self, train_set, val_set=None): """Fit the model to observations. Parameters ---------- train_set: :obj:``, required User-Item preference data as well as additional modalities. val_set: :obj:``, optional, default: None User-Item preference data for model selection purposes (e.g., early stopping). Returns ------- self : object """, train_set, val_set) if self.trainable: self._fit_gmf() return self
def _fit_gmf(self): import os import tensorflow as tf from tqdm import trange from .ops import gmf, loss_fn, train_fn np.random.seed(self.seed) os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) graph = tf.Graph() with graph.as_default(): tf.set_random_seed(self.seed) self.user_id = tf.placeholder(shape=[None, ], dtype=tf.int32, name='user_id') self.item_id = tf.placeholder(shape=[None, ], dtype=tf.int32, name='item_id') self.labels = tf.placeholder(shape=[None, 1], dtype=tf.float32, name='labels') self.interaction = gmf(uid=self.user_id, iid=self.item_id, num_users=self.train_set.num_users, num_items=self.train_set.num_items, emb_size=self.num_factors, reg_user=self.regs[0], reg_item=self.regs[1], seed=self.seed) logits = tf.layers.dense(self.interaction, units=1, name='logits', kernel_initializer=tf.initializers.lecun_uniform(self.seed)) self.prediction = tf.nn.sigmoid(logits) self.loss = loss_fn(labels=self.labels, logits=logits) train_op = train_fn(self.loss, learning_rate=self.learning_rate, learner=self.learner) initializer = tf.global_variables_initializer() config = tf.ConfigProto() config.gpu_options.allow_growth = True self.sess = tf.Session(graph=graph, config=config) loop = trange(self.num_epochs, disable=not self.verbose) for _ in loop: count = 0 sum_loss = 0 for i, (batch_users, batch_items, batch_ratings) in enumerate( self.train_set.uir_iter(self.batch_size, shuffle=True, binary=True, num_zeros=self.num_neg)): _, _loss =[train_op, self.loss], feed_dict={ self.user_id: batch_users, self.item_id: batch_items, self.labels: batch_ratings.reshape(-1, 1) }) count += len(batch_ratings) sum_loss += _loss * len(batch_ratings) if i % 10 == 0: loop.set_postfix(loss=(sum_loss / count)) if self.early_stopping is not None and self.early_stop(**self.early_stopping): break loop.close()
[docs] def monitor_value(self): """Calculating monitored value used for early stopping on validation set (`val_set`). This function will be called by `early_stop()` function. Returns ------- res : float Monitored value on validation set. Return `None` if `val_set` is `None`. """ if self.val_set is None: return None from .ops import ndcg return ndcg(self, self.train_set, self.val_set)
[docs] def score(self, user_idx, item_idx=None): """Predict the scores/ratings of a user for an item. Parameters ---------- user_idx: int, required The index of the user for whom to perform score prediction. item_idx: int, optional, default: None The index of the item for that to perform score prediction. If None, scores for all known items will be returned. Returns ------- res : A scalar or a Numpy array Relative scores that the user gives to the item or to all known items """ if item_idx is None: if self.train_set.is_unk_user(user_idx): raise ScoreException("Can't make score prediction for (user_id=%d)" % user_idx) known_item_scores =, feed_dict={ self.user_id: [user_idx], self.item_id: np.arange(self.train_set.num_items) }) return known_item_scores.ravel() else: if self.train_set.is_unk_user(user_idx) or self.train_set.is_unk_item(item_idx): raise ScoreException("Can't make score prediction for (user_id=%d, item_id=%d)" % (user_idx, item_idx)) user_pred =, feed_dict={ self.user_id: [user_idx], self.item_id: [item_idx] }) return user_pred.ravel()